‘Tandem catalytic system efficiently converts carbon dioxide to methanol’
24 July 2020
11:52
Converting carbon dioxide to methanol, a potentially renewable alternative fuel, offers an opportunity to simultaneously form an alternative fuel and cut down on carbon dioxide emissions.
Inspired by naturally occurring processes, a team of Boston College chemists used a multi-catalyst system to convert carbon dioxide to methanol at the lowest temperatures reported with high activity and selectivity, the researchers reported in a recent online edition of the journal Chem.
En als deze in ontwikkeling zijnde technieken het toch niet blijken te hebben, of in aanvulling hierop >
‘New technique to capture carbon dioxide could greatly reduce power plant greenhouse gases’
[-]
Developed by researchers at the University of California, Berkeley, Lawrence Berkeley National Laboratory and ExxonMobil, the new technique uses a highly porous material called a metal-organic framework, or MOF, modified with nitrogen-containing amine molecules to capture the CO2 and low temperature steam to flush out the CO2 for other uses or to sequester it underground.
In experiments, the technique showed a six times greater capacity for removing CO2 from flue gas than current amine-based technology, and it was highly selective, capturing more than 90% of the CO2 emitted. The process uses low temperature steam to regenerate the MOF for repeated use, meaning less energy is required for carbon capture.