Scientists Created Tiny Organs That Could Bring an End to Animal Testing
An entire system of miniature organs known as “organoids” has been created by scientists at the Wake Forest Institute for Regenerative Medicine. In doing so they have built the world’s most sophisticated lab model of the human body.
The whole point of the system is that these tiny organs, or “organoids”, can successfully determine if a pharmaceutical product is toxic to the human body or not, which would also help put an end to animal testing. The world of organoids is not completely new, however, the Wake Forest experiment has been dubbed as the “World’s Most Sophisticated Lab Model of the Human Body.”
Their findings were published in the scientific journal Biofabrication.
Ref:
https://school.wakehealth.edu/
De in onwikkeling zijnde techniek lijkt niet specifiek bedoelt om dierproeven overbodig te maken.
Abstract
Current practices in drug development have led to therapeutic compounds being approved for widespread use in humans, only to be later withdrawn due to unanticipated toxicity. These occurrences are largely the result of erroneous data generated by in vivo and in vitro preclinical models that do not accurately recapitulate human physiology. Herein, a human primary cell- and stem cell-derived 3D organoid technology is employed to screen a panel of drugs that were recalled from market by the FDA. The platform is comprised of multiple tissue organoid types that remain viable for at least 28 days, in vitro. For many of these compounds, the 3D organoid system was able to demonstrate toxicity. Furthermore, organoids exposed to non-toxic compounds remained viable at clinically relevant doses. Additional experiments were performed on integrated multi-organoid systems containing liver, cardiac, lung, vascular, testis, colon, and brain. These integrated systems proved to maintain viability and expressed functional biomarkers, long-term. Examples are provided that demonstrate how multi-organoid ‘body-on-a-chip’ systems may be used to model the interdependent metabolism and downstream effects of drugs across multiple tissues in a single platform. Such 3D in vitro systems represent a more physiologically relevant model for drug screening and will likely reduce the cost and failure rate associated with the approval of new drugs.
https://iopscience.iop.org/article/10.1088/1758-5090/ab6d36
Zie ook >
https://www.popularmechanics.com/science/health/a31261876/organoids-drug-animal-testing/